The Global Deep Learning Market size was valued at USD 24.85 Billion in 2023 and the total Global Deep Learning revenue is expected to grow at a CAGR of 31.2% from 2023 to 2030, reaching nearly USD 135.65 Billion in 2030.Global Deep Learning Market Overview
Deep Learning is a specific kind of machine learning, which uses layered computational models to analyse data. Deep Learning, also known as deep structured learning, is a key component of data science, which uses prescriptive analytics and statistics to gather, analyse, and handle huge quantities of data. The technology has several applications in the retail, automotive, medical, security, agricultural, and industrial sectors. It is commonly used in face recognition software, natural language processing (NLP), self-driving cars, language translation services and speech synthesis software. To know about the Research Methodology :- Request Free Sample Report The Deep Learning Market is growing thanks to the need for sophisticated artificial intelligence solutions, the expansion of data centres, and the widespread acceptance of cloud-based technologies by different industries. Amazon Web Services (AWS), Google, IBM, Intel, Micron Technology, Microsoft, NVidia, Qualcomm, Samsung Electronics Sensory Inc. and Xilinx are some of the leading companies in the deep learning business. These companies have used many kinds of strategies, including improved products, teamwork, and investment in research and development, to grow their market share in the Deep Learning Market. The MMR report aims to provide a thorough analysis global Deep Learning Market to industry stakeholders. The report presents the current and past status of the industry along with forecasted market trends and size. The report explains the complicated data in simple language. It covers all aspects of the industry and includes a dedicated study of market segments and projects the global Deep Leaning Market size while considering the market’s dynamics and structure. APAC deep learning is growing with the presence of key technology companies and a focus on AI research and development and technology is used in electronic products like Smartphones, Tablets, and Laptops as well as medical and automotive products. Asia-Pacific is observing significant growth, driven by countries like China investing heavily in Deep learning technologies.Global Deep Learning Market Dynamics
Use of Cloud Computing in the Deep Learning Market: The increasing adoption of cloud-based technology is impacting the global deep-learning market. Improvement in processing power, decline in hardware costs, and the demand for versatile and easily accessible infrastructure are key drivers of the deep learning market. The rapid adoption of cloud-based technology across industries is driving the growth of deep learning algorithms, which can perform repetitive and routine tasks more efficiently compared to human capabilities. The Deep Learning Market has boosted the ability of robot applications like drones and autonomous cars. The growing need for advanced robotic systems in numerous industries such as automotive, electronics, food and beverage, healthcare, and others has driven the market growth. The need for cloud-based infrastructure is the combination of deep learning with big analytical data, and advanced technologies like AI, IoT and machine vision. Increasing usage of cloud services to modernize IT infrastructure, improve business operations, and stay competitive in the digital era so the Deep Learning Market is expected to grow fast with the Asia-Pacific region. Rising Demand for Artificial Intelligence (AI): Applications such as image and speech recognition, AI-driven tasks, and natural language processing have added to the Deep Learning market development. Government technology corporations and investors in ventures are spending fully on AI research and development. The investment speeds up the growth of the global deep learning market, which drives the development of advanced technology deep learning solutions. Global Deep Learning Market Restraints: Major investment expenditures: The Global Deep Learning Market requires a large amount of data also an initial high amount of investment to beat other techniques. Training is very expensive, because of the complicated design of data models. There is a lack of technical expertise and not following the standards operating protocols (SOPs) is limiting the market growth. Besides, the global deep learning market requires hundreds of machines with the use of expensive GPUs- graphic processing units. The initial investment must grow to achieve the highest level of precision in the results obtained. The Global deep learning market has some significant obstacles that must be handled, including the black box problem, overpopulation, and a lack of contextual knowledge, information requirements, and computational intensity, which have an impact on the market. Global Deep Learning Market Opportunity: Growing demand for deep learning solutions in numerous industries like Healthcare, Banking, supply chain and logistics, Entertainment, agriculture, Real Estate, Telecommunication, Education, Energy, and Manufacturing sectors. The Global Deep Learning Market is driven by advancements in data centre capabilities, high computing power, and its ability to perform tasks without relying on human input. The rapid adoption of cloud-based technology is a useful growth of the deep learning market. The market is expected to grow as a result of the IT giant's increased investments in R&D and innovation. Using Global Deep Learning algorithms in predictive maintenance, whereby machines can determine when servicing or repairs are needed, reducing downtime is boosting manufacturing as well as the production sector. The manufacturing industry is a most emerging sector, which becomes the future opportunity for the development of the global deep learning market.Global Deep Learning Market Segment Analysis:
Based on Offering, the Software holds the largest market share of the Global Deep Learning Market and is expected to grow at the highest CAGR. The growing use of many applications like Smartphone assistants, ATM Scanner, image and voice recognition software on social networks and software that also serves up advertising on many websites is driving the growth of the global deep learning market. Most manufacturing companies that develop systems and software provide online and offline support. Some companies provide Installation, training, and support systems with online assistance and post-maintenance of software and required services. Based on Application, the global deep learning market is divided into Signal recognition, Data mining, Image Recognition and others. Image Recognition holds the largest market share. Data mining is expected to grow the fastest CAGR in the deep learning market. Deep learning models can recognize the picture automatically, complex patterns, relationships and correlations in given data. It is very useful in fraud detection, image recognition and processing natural language. Facebook launched the Self-supervised DL solution known as SEER. This works as a learning from any random group of unlabelled images on the internet with the dataset. By End users The global deep learning market is divided into automotive, aerospace & Defence, Healthcare, Manufacturing sector and Marketing. Automotive industries contributed the largest share. Over the expected duration, the healthcare industry will continue to grow at the fastest rate. The healthcare industry’s digital transformation is projected to continue in future, by using technologies like AI, deep learning, and data analytics to intervene. Diagnosis of diseases early and identification of risks are found by deep learning methods in the Global Deep Learning market.Global Deep Learning Market Regional Analysis:
North America has the highest market share accounting for 35% in 2023 and is expected to maintain its dominance by 2030. The growing funding in artificial intelligence and neural networks is related to the deep learning market. The region's widespread use of images and monitoring purposes is estimated to generate new growth prospects over the forecast period. 1.In April 2023, the U.S. Department of Energy’s Oak Ridge National Laboratory in an end-to-end electron and scanning probe microscopy of Image analysis software package was developed. Asia-Pacific is expected to have the highest CAGR between 2024 and 2030, and they more market opportunities in this region in the future. Increasing advancement in technologies in countries like India, China and Japan. LAMEA, or Latin America, the Middle East, and Africa is a region that is also involved in the global deep learning market. The rising number of digital start-ups in Brazil, shows the highest funding and investments by key players, also new AI policies and coherent strategies have been developed by countries in South America including Brazil, Mexico, and Uruguay. Competitive landscape: Industrial organisations were encouraged to adopt new automation and control technologies to counter increased wages and maximize. As a result, the global deep learning market started to acquire continuously increases. Microsoft Corporation invested multibillion dollars in an artificial intelligence lab Open AI, In October 2023, Microsoft announced that it was spending $ 3.2 billion to increase its cloud computing and AI infrastructure in Australia. In January 2022 the Acquisition of Activision Blizzard for $68.7 billion. In November 2023 - In a step towards advancing the realm of machine learning (ML) technologies and artificial intelligence (AI) within the telecommunications industry, Telenor and Ericsson have signed an (MoU) for a three-year collaboration that wishes to explore, develop, and test advanced AI/ML solutions towards enhancing energy efficiency without compromising on the quality of connectivity in mobile networks. September 2023: Amazon and Anthropic announced a strategic partnership that would bring together their respective technology and expertise in safer generative artificial intelligence (AI) to accelerate the development of anthropic future foundation models and make them widely accessible to AWS consumers. In October 2022, Zen Desk Inc. announced the launch of a new AI solution, Intelligent Triage and Smart Assist, empowering businesses to triage customer support requests automatically and access valuable data at scale. August 2022: Amazon launched a new Machine Learning (ML) software through which medical records of patients are analysed for better treatment of patients and reduce overall expenses.Deep Learning Market Scope: Inquire before buying
Deep Learning Market Report Coverage Details Base Year: 2023 Forecast Period: 2024-2030 Historical Data: 2018 to 2023 Market Size in 2023: US $ 24.85 Bn. Forecast Period 2024 to 2030 CAGR: 31.2% Market Size in 2030: US $ 135.65 Bn. Segments Covered: by Offering Hardware Software Services by Application Image Recognition Signal Recognition Data Mining by End User Automotive industry Aerospace &Defence Healthcare Industry Manufacturing Sector Marketing Deep Learning Market, by Region
North America (United States, Canada and Mexico) Europe (UK, France, Germany, Italy, Spain, Sweden, Austria and Rest of Europe) Asia Pacific (China, South Korea, Japan, India, Australia, Indonesia, Malaysia, Vietnam, Taiwan, Bangladesh, Pakistan and Rest of APAC) Middle East and Africa (South Africa, GCC, Egypt, Nigeria and Rest of ME&A) South America (Brazil, Argentina Rest of South America)Key Player Analysis:
1) AWS (Amazon web services) 2) Google Inc. 3) IBM Corporation 4) Intel Corporation 5) Micron Technology 6) Microsoft Corporation 7) NVidia corporation 8) Qualcomm Technologies Inc. 9) Samsung Electronics 10) Sensory Inc. 11) Skymind 12) Xilinx 13) Alphabet Inc. 14) Hewlett Packard 15) Graphcore Frequently Asked Questions: 1. Which region has the largest share in the Global Market? Ans North America hold the largest share in 2023. 2. What is the size of the Global Market? Ans. The Global Deep Learning Market size was valued at USD 24.85 Billion in 2023 reaching nearly USD 135.65 Billion in 2030. 3. What is the growth rate of the Global Market? Ans: The Global Deep Learning Market is growing at a CAGR of 31.2% during the forecasting period 2023-2030. 4. What are the factors driving the Market? Ans: The Global Market growth includes Rising Demand for Artificial Intelligence (AI) across the various end-use verticals, a rise in big data analytics, and Improvement in deep learning algorithms. 5. What are the key growth strategies of global deep learning market players? Ans. The key growth strategies of the global market include product portfolio expansion, mergers & acquisitions, agreements, geographical expansion and collaborations. 6. Who are the key players in the Global Deep Learning market? Ans: The important key players in the Global Deep Learning Market are –Google Inc., Hewlett Packard, IBM Corporation, Intel Corporation, Microsoft Corporation, NVidia Corporation, Qualcomm Technologies Inc., Sensory Inc., Skymind, Alphabet Inc., Micron Technology Inc., Amazon Web
1. Deep Learning Market Introduction 1.1. Study Assumption and Market Definition 1.2. Scope of the Study 1.3. Executive Summary 2. Deep Learning Market: Dynamics 2.1. Deep Learning Market Trends by Region 2.1.1. North America Deep Learning Market Trends 2.1.2. Europe Deep Learning Market Trends 2.1.3. Asia Pacific Deep Learning Market Trends 2.1.4. Middle East and Africa Deep Learning Market Trends 2.1.5. South America Deep Learning Market Trends 2.2. Deep Learning Market Dynamics by Region 2.2.1. North America 2.2.1.1. North America Deep Learning Market Drivers 2.2.1.2. North America Deep Learning Market Restraints 2.2.1.3. North America Deep Learning Market Opportunities 2.2.1.4. North America Deep Learning Market Challenges 2.2.2. Europe 2.2.2.1. Europe Deep Learning Market Drivers 2.2.2.2. Europe Deep Learning Market Restraints 2.2.2.3. Europe Deep Learning Market Opportunities 2.2.2.4. Europe Deep Learning Market Challenges 2.2.3. Asia Pacific 2.2.3.1. Asia Pacific Deep Learning Market Drivers 2.2.3.2. Asia Pacific Deep Learning Market Restraints 2.2.3.3. Asia Pacific Deep Learning Market Opportunities 2.2.3.4. Asia Pacific Deep Learning Market Challenges 2.2.4. Middle East and Africa 2.2.4.1. Middle East and Africa Deep Learning Market Drivers 2.2.4.2. Middle East and Africa Deep Learning Market Restraints 2.2.4.3. Middle East and Africa Deep Learning Market Opportunities 2.2.4.4. Middle East and Africa Deep Learning Market Challenges 2.2.5. South America 2.2.5.1. South America Deep Learning Market Drivers 2.2.5.2. South America Deep Learning Market Restraints 2.2.5.3. South America Deep Learning Market Opportunities 2.2.5.4. South America Deep Learning Market Challenges 2.3. PORTER’s Five Forces Analysis 2.4. PESTLE Analysis 2.5. Technology Roadmap 2.6. Regulatory Landscape by Region 2.6.1. North America 2.6.2. Europe 2.6.3. Asia Pacific 2.6.4. Middle East and Africa 2.6.5. South America 2.7. Key Opinion Leader Analysis For Deep Learning Industry 2.8. Analysis of Government Schemes and Initiatives For Deep Learning Industry 2.9. Deep Learning Market Trade Analysis 2.10. The Global Pandemic Impact on Deep Learning Market 3. Deep Learning Market: Global Market Size and Forecast by Segmentation by Demand and Supply Side (by Value in USD Million) 2023-2030 3.1. Deep Learning Market Size and Forecast, by Offering (2023-2030) 3.1.1. Hardware 3.1.2. Software 3.1.3. Services 3.2. Deep Learning Market Size and Forecast, by Application (2023-2030) 3.2.1. Image Recognition 3.2.2. Signal Recognition 3.2.3. Data Mining 3.3. Deep Learning Market Size and Forecast, by End User (2023-2030) 3.3.1. Automotive industry 3.3.2. Aerospace &Defence 3.3.3. Healthcare Industry 3.3.4. Manufacturing Sector 3.3.5. Marketing 3.4. Deep Learning Market Size and Forecast, by Region (2023-2030) 3.4.1. North America 3.4.2. Europe 3.4.3. Asia Pacific 3.4.4. Middle East and Africa 3.4.5. South America 4. North America Deep Learning Market Size and Forecast by Segmentation (by Value in USD Million) 2023-2030 4.1. North America Deep Learning Market Size and Forecast, by Offering (2023-2030) 4.1.1. Hardware 4.1.2. Software 4.1.3. Services 4.2. North America Deep Learning Market Size and Forecast, by Application (2023-2030) 4.2.1. Image Recognition 4.2.2. Signal Recognition 4.2.3. Data Mining 4.3. North America Deep Learning Market Size and Forecast, by End User (2023-2030) 4.3.1. Automotive industry 4.3.2. Aerospace &Defence 4.3.3. Healthcare Industry 4.3.4. Manufacturing Sector 4.3.5. Marketing 4.4. North America Deep Learning Market Size and Forecast, by Country (2023-2030) 4.4.1. United States 4.4.1.1. United States Deep Learning Market Size and Forecast, by Offering (2023-2030) 4.4.1.1.1. Hardware 4.4.1.1.2. Software 4.4.1.1.3. Services 4.4.1.2. United States Deep Learning Market Size and Forecast, by Application (2023-2030) 4.4.1.2.1. Image Recognition 4.4.1.2.2. Signal Recognition 4.4.1.2.3. Data Mining 4.4.1.3. United States Deep Learning Market Size and Forecast, by End User (2023-2030) 4.4.1.3.1. Automotive industry 4.4.1.3.2. Aerospace &Defence 4.4.1.3.3. Healthcare Industry 4.4.1.3.4. Manufacturing Sector 4.4.1.3.5. Marketing 4.4.2. Canada 4.4.2.1. Canada Deep Learning Market Size and Forecast, by Offering (2023-2030) 4.4.2.1.1. Hardware 4.4.2.1.2. Software 4.4.2.1.3. Services 4.4.2.2. Canada Deep Learning Market Size and Forecast, by Application (2023-2030) 4.4.2.2.1. Image Recognition 4.4.2.2.2. Signal Recognition 4.4.2.2.3. Data Mining 4.4.2.3. Canada Deep Learning Market Size and Forecast, by End User (2023-2030) 4.4.2.3.1. Automotive industry 4.4.2.3.2. Aerospace &Defence 4.4.2.3.3. Healthcare Industry 4.4.2.3.4. Manufacturing Sector 4.4.2.3.5. Marketing 4.4.3. Mexico 4.4.3.1. Mexico Deep Learning Market Size and Forecast, by Offering (2023-2030) 4.4.3.1.1. Hardware 4.4.3.1.2. Software 4.4.3.1.3. Services 4.4.3.2. Mexico Deep Learning Market Size and Forecast, by Application (2023-2030) 4.4.3.2.1. Image Recognition 4.4.3.2.2. Signal Recognition 4.4.3.2.3. Data Mining 4.4.3.3. Mexico Deep Learning Market Size and Forecast, by End User (2023-2030) 4.4.3.3.1. Automotive industry 4.4.3.3.2. Aerospace &Defence 4.4.3.3.3. Healthcare Industry 4.4.3.3.4. Manufacturing Sector 4.4.3.3.5. Marketing 5. Europe Deep Learning Market Size and Forecast by Segmentation (by Value in USD Million) 2023-2030 5.1. Europe Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.2. Europe Deep Learning Market Size and Forecast, by Application (2023-2030) 5.3. Europe Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4. Europe Deep Learning Market Size and Forecast, by Country (2023-2030) 5.4.1. United Kingdom 5.4.1.1. United Kingdom Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.1.2. United Kingdom Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.1.3. United Kingdom Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.2. France 5.4.2.1. France Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.2.2. France Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.2.3. France Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.3. Germany 5.4.3.1. Germany Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.3.2. Germany Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.3.3. Germany Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.4. Italy 5.4.4.1. Italy Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.4.2. Italy Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.4.3. Italy Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.5. Spain 5.4.5.1. Spain Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.5.2. Spain Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.5.3. Spain Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.6. Sweden 5.4.6.1. Sweden Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.6.2. Sweden Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.6.3. Sweden Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.7. Austria 5.4.7.1. Austria Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.7.2. Austria Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.7.3. Austria Deep Learning Market Size and Forecast, by End User (2023-2030) 5.4.8. Rest of Europe 5.4.8.1. Rest of Europe Deep Learning Market Size and Forecast, by Offering (2023-2030) 5.4.8.2. Rest of Europe Deep Learning Market Size and Forecast, by Application (2023-2030) 5.4.8.3. Rest of Europe Deep Learning Market Size and Forecast, by End User (2023-2030) 6. Asia Pacific Deep Learning Market Size and Forecast by Segmentation (by Value in USD Million) 2023-2030 6.1. Asia Pacific Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.2. Asia Pacific Deep Learning Market Size and Forecast, by Application (2023-2030) 6.3. Asia Pacific Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4. Asia Pacific Deep Learning Market Size and Forecast, by Country (2023-2030) 6.4.1. China 6.4.1.1. China Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.1.2. China Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.1.3. China Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.2. S Korea 6.4.2.1. S Korea Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.2.2. S Korea Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.2.3. S Korea Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.3. Japan 6.4.3.1. Japan Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.3.2. Japan Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.3.3. Japan Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.4. India 6.4.4.1. India Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.4.2. India Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.4.3. India Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.5. Australia 6.4.5.1. Australia Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.5.2. Australia Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.5.3. Australia Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.6. Indonesia 6.4.6.1. Indonesia Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.6.2. Indonesia Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.6.3. Indonesia Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.7. Malaysia 6.4.7.1. Malaysia Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.7.2. Malaysia Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.7.3. Malaysia Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.8. Vietnam 6.4.8.1. Vietnam Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.8.2. Vietnam Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.8.3. Vietnam Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.9. Taiwan 6.4.9.1. Taiwan Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.9.2. Taiwan Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.9.3. Taiwan Deep Learning Market Size and Forecast, by End User (2023-2030) 6.4.10. Rest of Asia Pacific 6.4.10.1. Rest of Asia Pacific Deep Learning Market Size and Forecast, by Offering (2023-2030) 6.4.10.2. Rest of Asia Pacific Deep Learning Market Size and Forecast, by Application (2023-2030) 6.4.10.3. Rest of Asia Pacific Deep Learning Market Size and Forecast, by End User (2023-2030) 7. Middle East and Africa Deep Learning Market Size and Forecast by Segmentation (by Value in USD Million) 2023-2030 7.1. Middle East and Africa Deep Learning Market Size and Forecast, by Offering (2023-2030) 7.2. Middle East and Africa Deep Learning Market Size and Forecast, by Application (2023-2030) 7.3. Middle East and Africa Deep Learning Market Size and Forecast, by End User (2023-2030) 7.4. Middle East and Africa Deep Learning Market Size and Forecast, by Country (2023-2030) 7.4.1. South Africa 7.4.1.1. South Africa Deep Learning Market Size and Forecast, by Offering (2023-2030) 7.4.1.2. South Africa Deep Learning Market Size and Forecast, by Application (2023-2030) 7.4.1.3. South Africa Deep Learning Market Size and Forecast, by End User (2023-2030) 7.4.2. GCC 7.4.2.1. GCC Deep Learning Market Size and Forecast, by Offering (2023-2030) 7.4.2.2. GCC Deep Learning Market Size and Forecast, by Application (2023-2030) 7.4.2.3. GCC Deep Learning Market Size and Forecast, by End User (2023-2030) 7.4.3. Nigeria 7.4.3.1. Nigeria Deep Learning Market Size and Forecast, by Offering (2023-2030) 7.4.3.2. Nigeria Deep Learning Market Size and Forecast, by Application (2023-2030) 7.4.3.3. Nigeria Deep Learning Market Size and Forecast, by End User (2023-2030) 7.4.4. Rest of ME&A 7.4.4.1. Rest of ME&A Deep Learning Market Size and Forecast, by Offering (2023-2030) 7.4.4.2. Rest of ME&A Deep Learning Market Size and Forecast, by Application (2023-2030) 7.4.4.3. Rest of ME&A Deep Learning Market Size and Forecast, by End User (2023-2030) 8. South America Deep Learning Market Size and Forecast by Segmentation (by Value in USD Million) 2023-2030 8.1. South America Deep Learning Market Size and Forecast, by Offering (2023-2030) 8.2. South America Deep Learning Market Size and Forecast, by Application (2023-2030) 8.3. South America Deep Learning Market Size and Forecast, by End User(2023-2030) 8.4. South America Deep Learning Market Size and Forecast, by Country (2023-2030) 8.4.1. Brazil 8.4.1.1. Brazil Deep Learning Market Size and Forecast, by Offering (2023-2030) 8.4.1.2. Brazil Deep Learning Market Size and Forecast, by Application (2023-2030) 8.4.1.3. Brazil Deep Learning Market Size and Forecast, by End User (2023-2030) 8.4.2. Argentina 8.4.2.1. Argentina Deep Learning Market Size and Forecast, by Offering (2023-2030) 8.4.2.2. Argentina Deep Learning Market Size and Forecast, by Application (2023-2030) 8.4.2.3. Argentina Deep Learning Market Size and Forecast, by End User (2023-2030) 8.4.3. Rest Of South America 8.4.3.1. Rest Of South America Deep Learning Market Size and Forecast, by Offering (2023-2030) 8.4.3.2. Rest Of South America Deep Learning Market Size and Forecast, by Application (2023-2030) 8.4.3.3. Rest Of South America Deep Learning Market Size and Forecast, by End User (2023-2030) 9. Global Deep Learning Market: Competitive Landscape 9.1. MMR Competition Matrix 9.2. Competitive Landscape 9.3. Key Players Benchmarking 9.3.1. Company Name 9.3.2. Business Segment 9.3.3. End-user Segment 9.3.4. Revenue (2022) 9.3.5. Company Locations 9.4. Leading Deep Learning Market Companies, by market capitalization 9.5. Market Structure 9.5.1. Market Leaders 9.5.2. Market Followers 9.5.3. Emerging Players 9.6. Mergers and Acquisitions Details 10. Company Profile: Key Players 10.1. AWS (Amazon web services) 10.1.1. Company Overview 10.1.2. Business Portfolio 10.1.3. Financial Overview 10.1.4. SWOT Analysis 10.1.5. Strategic Analysis 10.1.6. Scale of Operation (small, medium, and large) 10.1.7. Details on Partnership 10.1.8. Regulatory Accreditations and Certifications Received by Them 10.1.9. Awards Received by the Firm 10.1.10. Recent Developments 10.2. Google Inc. 10.3. IBM Corporation 10.4. Intel Corporation 10.5. Micron Technology 10.6. Microsoft Corporation 10.7. NVidia corporation 10.8. Qualcomm Technologies Inc. 10.9. Samsung Electronics 10.10. Sensory Inc. 10.11. Skymind 10.12. Xilinx 10.13. Alphabet Inc. 10.14. Hewlett Packard 10.15. Graphcore 11. Key Findings 12. Industry Recommendations 13. Deep Learning Market: Research Methodology 14. Terms and Glossary