Predictive Maintenance Market size was valued at US$ 5.30 Bn.in 2022 and the total Predictive Maintenance revenue is expected to grow at 29.5% from 2023 to 2029, reaching nearly US$ 32.42 Bn.Predictive Maintenance Market Overview:
The recorded data allows an engineer to estimate the eventual failure point of the observed asset, enabling it to be repaired or replaced shortly before it fails. Predictive maintenance reduces the occurrence of repair while still eliminating unexpected reactive maintenance and reducing equipment downtime and expenses associated with preventative maintenance. Predictive maintenance increases the lifespan of the equipment being observed. The report explores the Predictive Maintenance market's segments (Solution, Service, Deployment, Enterprise Size, End-Use, and Region). Data has been provided by market participants, and regions (North America, Asia Pacific, Europe, Middle East & Africa, and South America). It provides a thorough analysis of the rapid advances that are currently taking place across all industry sectors. Facts and figures, illustrations, and presentations are used to provide key data analysis for the historical period from 2018 to 2022. The report investigates the Predictive Maintenance market's drivers, limitations, prospects, and barriers. This MMR report includes investor recommendations based on a thorough examination of the Predictive Maintenance market's contemporary competitive scenario. To know about the Research Methodology :- Request Free Sample ReportPredictive Maintenance Market Dynamics:
The growing use of advanced technologies to gather important insights is a major driver of market growth. Continuous advancements in big data, M2M connectivity, and cloud technology have opened up new avenues for investigating data obtained from industrial assets. Sensors, cameras, and other smart devices create a massive quantity of data for IoT devices. The data, on the other hand, has little value until it is converted into actionable, relevant information. Detailed analysis, big data and data visualization approaches allow companies to obtain fresh perspectives. Real-time data analysis and decision-making are frequently done manually, however, it is preferable to be done electronically to make it scalable. The primary function of AI technology is to examine massive amounts of data generated by various elements of the IoT infrastructure and translate the data into relevant insights. AI is being integrated into established modeling techniques by enterprises to automate the data analysis and interpretation and acquire real-time knowledge from big data provided by these IoT devices. AI provides tools and mechanisms for organizations to evaluate real-time data and extract different IoT use cases. A scarcity of skilled workers is a major restraint in the market growth. To install AI-based IoT technologies required for predictive analytics, skillsets, and trained personnel are necessary to manage the most recent software systems. As a result, regular personnel must be trained on how to use new and enhanced systems. Furthermore, enterprises are quick to adopt new technology; nevertheless, they face a scarcity of highly educated and capable people. As the majority of global suppliers organize predictive maintenance initiatives, the requirement for highly qualified personnel grows. Companies must develop competence in areas e.g. cybersecurity, networking, and application development. Additionally, they hope to leverage IoT data to forecast outcomes, avoid errors, optimize operations, create new products, and provide advanced analytics expertise, including AI and Machine learning. A major challenge in the market growth is that frequent maintenance and upgrades are required to keep the systems operational. AI-based IoT solutions are being adopted by businesses for predictive maintenance and improved customer service. Market providers must build predictive maintenance solutions that take into account two critical factors: maintenance and upgrades. To adopt technical updates, AI-based IoT platforms must be upgraded and sustained in line with the evolving business requirements. As additional features are introduced, the software must also be updated. The new systems must be incorporated with both the old and the new ones. The cost of repairs rises as the number of systems grows. Maintaining and updating AI-based IoT systems will be a difficult undertaking for organizations that provide solutions without disruptions.Predictive Maintenance Market Segment Analysis:
By Solution, the integrated solution segment is expected to dominate the market at the end of the forecast period. The increased need for customized solutions might be ascribed to the high demand for integrated systems. Additionally, as these solutions have gone mainstream, the need for application-specific services from numerous industrial sectors has grown substantially. Integrated solutions are custom-made, whilst isolated or standalone solutions are benchmarked or ready-made solutions provided by market participants. Standalone methods do not allow for customization. However, because of their low cost, standalone alternatives are often used by small and medium-sized businesses. The growing need for a single solution with many features is driving the popularity of integrated solutions over standalone alternatives. By Service, the installation segment is expected to dominate the market at the end of the forecast period. Over the forecast period, the demand for cloud-based implementation of services from multiple sectors e.g. aerospace and military, automobile and transportation, and power and utilities is anticipated to grow. This is anticipated to contribute much more to segment growth. Because heavy machinery and equipment require frequent and timely maintenance to work properly, service and maintenance solutions are gaining popularity. Once these solutions are deployed, support and repair services are critical throughout the solution's lifespan. These services assist firms in increasing overall efficiency and income creation. The greater rate of implementation of preventative and reactive maintenance solutions, as well as the anticipated continuance of the trend, are also driving the segment growth. By End-Use, the manufacturing segment is expected to grow at a CAGR of 4.9% during the forecast period. The increased requirement for maintenance of production machinery e.g. robotic systems, apparatus, forklifts, compressors, etc. to reduce total downtime is increasing the manufacturing segment's use of preventive maintenance services and solutions. Additionally, increased production automation, along with Industry 4.0, is estimated to drive the demand for these technologies to secure high-quality and expensive apparatus from damage. The energy and utility sector is also a significant contributor to the growing market. The segment's growth can be ascribed to the growing demand to improve system reliability by identifying possible difficulties before they arise. Additionally, the growing necessity to estimate the possibility of a breakdown of aging components in power and utility infrastructure is driving the market growth. Moreover, the prevalence of energy consumption analytics apps is helping to drive the energy and utility segment to the forefront of the industry.Regional Insights:
During the forecast period, the Asia Pacific market is expected to grow at a CAGR of 5.8%. The increased growth of the market in the continent is mostly due to substantial expenditures offered by the state and private sectors to improve maintenance solutions. As a result, the need for preventative or predictive maintenance solutions installed for optimizing a facility's maintenance process is increasing. Furthermore, the region's increased supply of inexpensive labor has resulted in the construction of a large number of industrial facilities. Moreover, increased concerns about lowering total downtime and operating costs in manufacturing facilities are compelling facility owners to use these approaches. At the end of the forecast period, North America is expected to dominate the market. The continent is at the forefront of the research and implementation of advanced predictive maintenance technologies. This is due to the existence of a significant number of top solution and service suppliers. Also, increased investments in new technologies e.g. artificial intelligence, Internet of Things, and machine learning are expected to help the region maintain its leading role during the forecast period. Moreover, increased awareness of the necessity of predictive maintenance procedures in factories and production units is driving increasing demand for these services in the region. The objective of the report is to present a comprehensive analysis of the Predictive Maintenance market to the stakeholders in the industry. The past and current status of the industry with the forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that include market leaders, followers, and new entrants. PORTER, PESTEL analysis with the potential impact of micro-economic factors of the market have been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give a clear futuristic view of the industry to the decision-makers. The report also helps in understanding the Predictive Maintenance market dynamics, and structure by analyzing the market segments and projecting the Predictive Maintenance market size. Clear representation of competitive analysis of key players by product, price, financial position, product portfolio, growth strategies, and regional presence in the Predictive Maintenance market make the report investor’s guide.Predictive Maintenance Market Scope: Inquire before buying
Predictive Maintenance Market Report Coverage Details Base Year: 2022 Forecast Period: 2023-2029 Historical Data: 2018 to 2022 Market Size in 2022: US $ 5.30 Bn. Forecast Period 2023 to 2029 CAGR: 29.5% Market Size in 2029: US $ 32.42 Bn. Segments Covered: by Solution Integrated Standalone by Service Installation Support & Maintenance Training & Consulting by Deployment Cloud On-premise by Enterprise Size Small & Medium Enterprises Large Enterprises by End-Use Aerospace & Defense Automotive & Transportation Energy & Utilities Healthcare IT & Telecommunication Manufacturing Oil & Gas Others Predictive Maintenance Market, by Region
North America (United States, Canada and Mexico) Europe (UK, France, Germany, Italy, Spain, Sweden, Austria and Rest of Europe) Asia Pacific (China, South Korea, Japan, India, Australia, Indonesia, Malaysia, Vietnam, Taiwan, Bangladesh, Pakistan and Rest of APAC) Middle East and Africa (South Africa, GCC, Egypt, Nigeria and Rest of ME&A) South America (razil, Argentina Rest of South America)Key Players
1. IBM Corporation 2. Software AG 3. SAP SE 4. Siemens AG 5. Microsoft Corporation 6. General Electric Company 7. Uptake 8. Seebo Interactive Ltd. 9. Space Time Insight, Inc. 10. Banner Engineering 11. Axiomtek Ltd. 12. Fujitsu Ltd. 13. Sigma IT 14. Larsen & Toubro Infotech Ltd. 15. SparkCognition 16. Hitachi 17. Oracle 18. AWS Splunk 19. Softweb Solutions 20. Asystom 21. Ecolibrium Energy 22. Fiix Software FAQs: 1. Which is the potential market for Predictive Maintenance in terms of the region? Ans. North America is the potential market for Predictive Maintenance in terms of the region 2. What are the challenges for new market entrants? Ans. A major challenge in the market growth is that frequent maintenance and upgrades are required to keep the systems operational. 3. What is expected to drive the growth of the Predictive Maintenance market in the forecast period? Ans. The growing use of advanced technologies to gather important insights is a major driver of market growth. 4. What is the projected market size & growth rate of the Predictive Maintenance Market? Ans. Predictive Maintenance Market size was valued at US$ 5.30 Bn. in 2022 and the total Predictive Maintenance revenue is expected to grow by 29.5% from 2023 to 2029, reaching nearly US$ 32.42 Bn. 5. What segments are covered in the Predictive Maintenance Market report? Ans. The segments covered are Solution, Service, Deployment, Enterprise Size, End-Use, and Region.
1. Global Predictive Maintenance Market: Research Methodology 2. Global Predictive Maintenance Market: Executive Summary 2.1 Market Overview and Definitions 2.1.1. Introduction to Global Predictive Maintenance Market 2.2. Summary 2.2.1. Key Findings 2.2.2. Recommendations for Investors 2.2.3. Recommendations for Market Leaders 2.2.4. Recommendations for New Market Entry 3. Global Predictive Maintenance Market: Competitive Analysis 3.1 MMR Competition Matrix 3.1.1. Market Structure by region 3.1.2. Competitive Benchmarking of Key Players 3.2 Consolidation in the Market 3.2.1 M&A by region 3.3 Key Developments by Companies 3.4 Market Drivers 3.5 Market Restraints 3.6 Market Opportunities 3.7 Market Challenges 3.8 Market Dynamics 3.9 PORTERS Five Forces Analysis 3.10 PESTLE 3.11. Regulatory Landscape by region • North America • Europe • Asia Pacific • The Middle East and Africa • South America 3.12 COVID-19 Impact 4. Global Predictive Maintenance Market Segmentation 4.1 Global Predictive Maintenance Market, by Solution (2022-2029) • Integrated • Standalone 4.2 Global Predictive Maintenance Market, by Service (2022-2029) • Installation • Support & Maintenance • Training & Consulting 4.3 Global Predictive Maintenance Market, by Deployment (2022-2029) • Cloud • On-premise 4.4 Global Predictive Maintenance Market, by Enterprise Size (2022-2029) • Small & Medium Enterprises • Large Enterprises 4.5 Global Predictive Maintenance Market, by End-Use (2022-2029) • Aerospace & Defense • Automotive & Transportation • Energy & Utilities • Healthcare • IT & Telecommunication • Manufacturing • Oil & Gas • Others 5. North America Predictive Maintenance Market(2022-2029) 5.1 North America Predictive Maintenance Market, by Solution (2022-2029) • Integrated • Standalone 5.2 North America Predictive Maintenance Market, by Service (2022-2029) • Installation • Support & Maintenance • Training & Consulting 5.3 North America Predictive Maintenance Market, by Deployment (2022-2029) • Cloud • On-premise 5.4 North America Predictive Maintenance Market, by Enterprise Size (2022-2029) • Small & Medium Enterprises • Large Enterprises 5.5 North America Predictive Maintenance Market, by End-Use (2022-2029) • Aerospace & Defense • Automotive & Transportation • Energy & Utilities • Healthcare • IT & Telecommunication • Manufacturing • Oil & Gas • Others 5.6 North America Predictive Maintenance Market, by Country (2022-2029) • United States • Canada • Mexico 6. Europe Predictive Maintenance Market (2022-2029) 6.1. European Predictive Maintenance Market, by Solution (2022-2029) 6.2. European Predictive Maintenance Market, by Service (2022-2029) 6.3. European Predictive Maintenance Market, by Deployment (2022-2029) 6.4. European Predictive Maintenance Market, by Enterprise Size (2022-2029) 6.5. European Predictive Maintenance Market, by End-Use (2022-2029) 6.6. European Predictive Maintenance Market, by Country (2022-2029) • UK • France • Germany • Italy • Spain • Sweden • Austria • Rest Of Europe 7. Asia Pacific Predictive Maintenance Market (2022-2029) 7.1. Asia Pacific Predictive Maintenance Market, by Solution (2022-2029) 7.2. Asia Pacific Predictive Maintenance Market, by Service (2022-2029) 7.3. Asia Pacific Predictive Maintenance Market, by Deployment (2022-2029) 7.4. Asia Pacific Predictive Maintenance Market, by Enterprise Size (2022-2029) 7.5. Asia Pacific Predictive Maintenance Market, by End-Use (2022-2029) 7.6. Asia Pacific Predictive Maintenance Market, by Country (2022-2029) • China • India • Japan • South Korea • Australia • ASEAN • Rest Of APAC 8. Middle East and Africa Predictive Maintenance Market (2022-2029) 8.1 Middle East and Africa Predictive Maintenance Market, by Solution (2022-2029) 8.2. Middle East and Africa Predictive Maintenance Market, by Service (2022-2029) 8.3. Middle East and Africa Predictive Maintenance Market, by Deployment (2022-2029) 8.4. Middle East and Africa Predictive Maintenance Market, by Enterprise Size (2022-2029) 8.5. Middle East and Africa Predictive Maintenance Market, by End-Use (2022-2029) 8.6. Middle East and Africa Predictive Maintenance Market, by Country (2022-2029) • South Africa • GCC • Egypt • Nigeria • Rest Of ME&A 9. South America Predictive Maintenance Market (2022-2029) 9.1. South America Predictive Maintenance Market, by Solution (2022-2029) 9.2. South America Predictive Maintenance Market, by Service (2022-2029) 9.3. South America Predictive Maintenance Market, by Deployment (2022-2029) 9.4. South America Predictive Maintenance Market, by Enterprise Size (2022-2029) 9.5. South America Predictive Maintenance Market, by End-Use (2022-2029) 9.6. South America Predictive Maintenance Market, by Country (2022-2029) • Brazil • Argentina • Rest Of South America 10. Company Profile: Key players 10.1 IBM Corporation 10.1.1. Company Overview 10.1.2. Financial Overview 10.1.3. Global Presence 10.1.4. Capacity Portfolio 10.1.5. Business Strategy 10.1.6. Recent Developments 10.2 Software AG 10.3 SAP SE 10.4 Siemens AG 10.5 Microsoft Corporation 10.6 General Electric Company 10.7 Uptake 10.8 Seebo Interactive Ltd. 10.9 Space Time Insight, Inc. 10.10 Banner Engineering 10.11 Axiomtek Ltd. 10.12 Fujitsu Ltd. 10.13 Sigma IT 10.14 Larsen & Toubro Infotech Ltd. 10.15 SparkCognition 10.16 Hitachi 10.17 Oracle 10.18 AWS Splunk 10.19 Softweb Solutions 10.20 Asystom 10.21 Ecolibrium Energy 10.22 Fiix Software